Hardware Improvements for the APS Storage Ring

January 20th 2003 Louis Emery Presented to ASD

Priority

- This year's:
 - Most technical issues solved.
 - Costs may not be known.
- Next year
 - May need to so some R&D, some aspects unknown
 - No budget known
- Much later
 - More difficult projects.

Improvements Not Covered

- Software, i.e. Automated injection tuning
- Procedures, i.e. Calibrating all new quadruple converters.

Information Presented on Improvements

- Benefits.
- What progress as been done so far.
- New components.
- Specifications.
- What still needs to be done.
- What are the unknown aspects

Upgrade of the BTS BPMs

- Purpose:
 - Reduced electrical noise from 1500 μm to 15 μm .
 - Help diagnose injection problems.
- Status: Finished this shutdown
- New components: Electronics.
- Specifications: Noise level at least as good as SR bpms.

Replace the Ceramic Kicker Chambers

• Purpose:

- Make bellows assembly independent from ceramic.
- Reduce injection bump mismatch with chambers of matched resistivity.
- Status: Ceramic chambers delivered and measured. Best group of 4 to be selected after comparing measured magnetic field waveforms.
- New components: Ceramic chambers, bellow assemblies.

Replace the Ceramic Kicker Chambers (cont'd)

- Specifications: Noise level at least as good as SR bpms.
- R&D required: Develop method to adjust the effective resistance.
- Unknown aspects: None

New Vertical Scrapers

- Purpose:
 - New design to reduce HOM heating.
 - Improve collimation properties.
- Status: Design stage.
- New components: Two scraper assemblies.

New Vertical Scrapers (cont'd)

- Specifications: New geometry to reduce HOM heating by a large factor, not determined yet.
- R&D required: Calculate impendance with MAFIA, optimize thickness of W material.
- Unknown aspects: Effectiveness as collimator, which is not easily simulated.

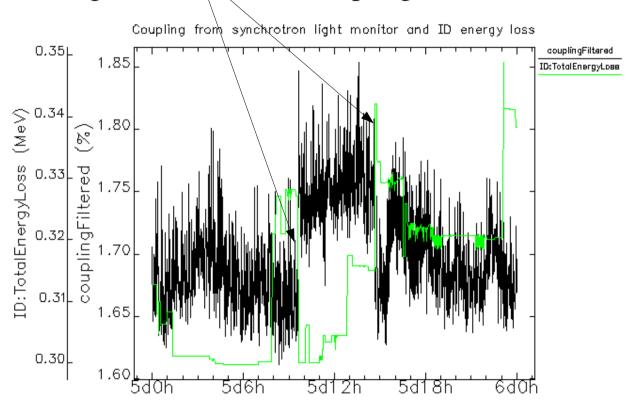
Stabilize Booster Extraction Septum Magnet PS

• Purpose:

- Reduce trajectory jitter (2.5 mm p-to-p) which makes the booster beamsize (σ =1.5 mm) effectively larger.
- Applicable to SR septum magnets.
- Status: ES performed test where external regulator was removed and internal regulation of new HV supply was used. The low amplitude first pulse was eliminated.
- New components: HV PS, modified circuit.

Stabilize Booster Extraction Septum Magnet PS (cont'd)

- Specifications: Stability of 1 part in 1500 for all pulses.
- R&D required: Circuit modification. Need beam studies to check.
- Unknown aspects: None.


Skew Quadrupoles at IDs

• Purpose:

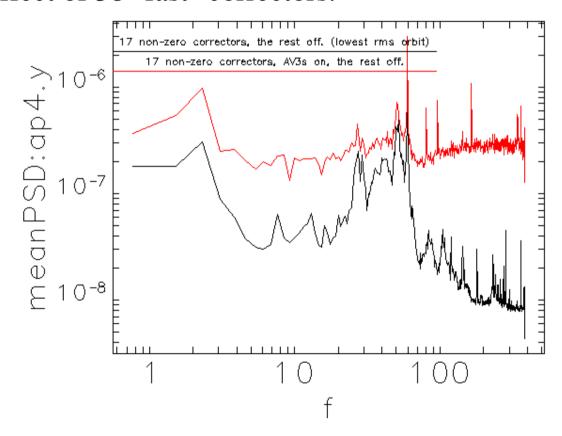
- Do feedforward on gap value to correct the skew quadrupole magnetic field perturbation.
- May be used for global correction as well.
- Status: Just an idea.
- New components: One skew quadrupole per ID. Could make copy of skew quads in ID4-CPU.

Skew Quadrupoles at IDs (cont'd)

ID changes that affect the coupling

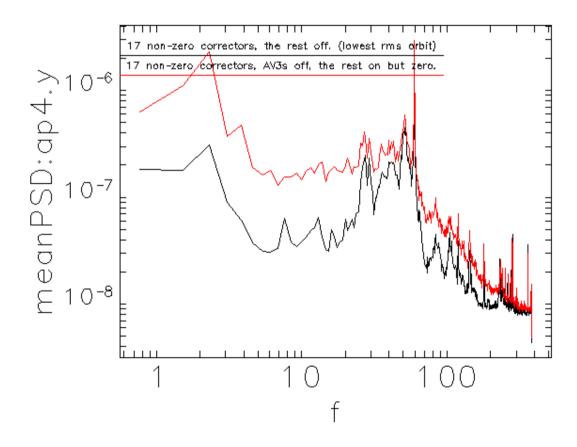
Time starting Wed Dec 4 22:48:24 2002

Skew Quadrupoles at IDs (cont'd)


- Specifications: Maximum field not determined yet.
- R&D required: Construction of skew quadrupole magnets.
- Unknown aspects: No available space in straight section

Corrector Regulation Improvement

- Purpose: Reduce RMS orbit motion.
- Status: Orbit motion spectrum was taken in August 2002 under different running conditions. 38 correctors with steel VC has been characterized.
- New components: 76 regulators at first, then maybe the rest.


Corrector Regulation Improvement (cont'd)

Effect of 38 "fast" correctors:

Corrector Regulation Improvement (cont'd)

Effect of 262 "slow" correctors:

Corrector Regulation Improvement (cont'd)

- Specifications: Desired output spectrum not determined yet.
- R&D required: Develop regulators.
- Unknown aspects: Whether the regulators with Al chambers need improvement. (The Al VC already attenuate high-frequency noise)

Kicker Pulse Output History

- Purpose:
 - Post-beam dump analysis of events.
- Status: Just an idea. Several other systems have histories: bpm, correctors, video data of beam images.
- New components: None.

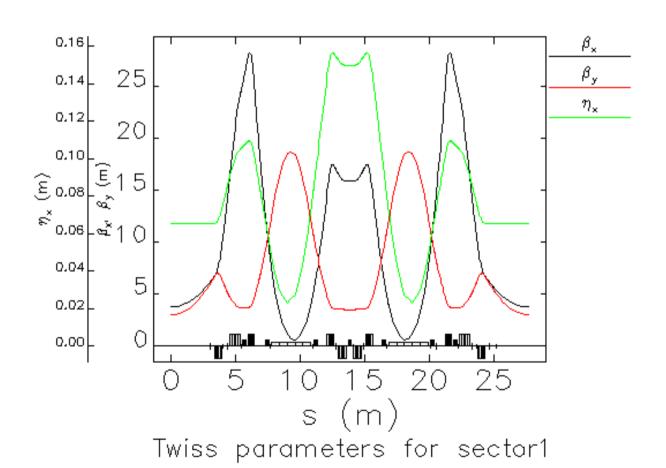
Kicker Pulse Output History (cont'd)

- Specifications: Record the kicker output at 0.5 s intervals with time stamp.
- R&D required: None.
- Unknown aspects: None.

Next Year's Improvements

Longer Straight Section. Phase 1.

- Purpose: Increase usable length of straight section from 5.0 m to 7.6 m to add a third undulator.
 - Remove H1/V1 and Q1 magnets.
- Status: Users are expecting this to happen. Studies guaranteed the feasibility of the optics in low-emittance and high-emittance, though lifetime is reduced somewhat.
- New components: ID VC extrusion, SR VC extrusion, transition box, new girders #1 and #5.


Longer Straight Section. Phase 1. (cont'd)

- Specifications: Fits three undulators. No strong reduction of lifetime. Minimum vertical aperture is not known, probably not 5 mm.
- R&D required: Synchrotron radiation masking should be re-examined. Studies on optics matching of reduced flexibility.
- Unknown aspects: None.

Dipole with Gradient

- Purpose: Lower emittance cell.
 - $-\varepsilon_{x} = 1.2$ nm-rad and effective $\varepsilon_{x} = 1.8$ nm-rad.
 - Necessary gradient is -0.17 1/m², which is very high.
 - Choice of canted poles or new windings on existing pole face.
- Status: Just an idea.
- New components: Either new dipoles, or new coil windings on pole face. Probably new SR curved extrusion in both cases. Stronger sextupoles.

Dipole with Gradient (cont'd)

Dipole with Gradient (cont'd)

- Specifications: Angle of canted pole face, current of windings (not calculated). Alignment of dipole.
- R&D required: Feasibility of winding idea (i.e. massive cooling for windings). Feasibility of canted pole face. Nonlinear analysis of cell.
- Unknown aspects: Which approach is easier. Perhaps we are satisfied with intermediate lower emittance obtained with rf frequency shift of +500 Hz.

Kicker PS Adjustments

• Purpose:

- Make identical normalized waveforms for all amplitudes.
- Towards transparent injection.
- Status: Kicker PS have an amplitude dependence, especially in the tail.
- New components: Unknown.

Kicker PS Adjustments (cont'd)

- Specifications: Normalized waveforms to be 1% of average.
- R&D required: Unknown
- Unknown aspects: Perhaps specification can be relaxed with secondary kickers applying corrective kick.

Waveform-Programmable Kicker

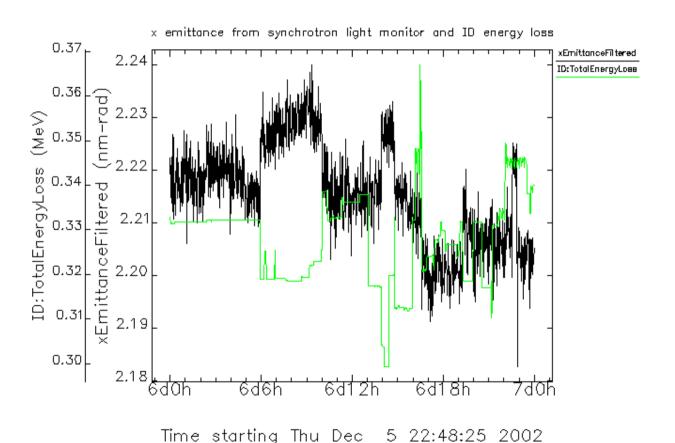
- Purpose: Correct betatron oscillation of stored bunches during injection. Program an actuator with the same waveform every injection event.
- Status: Just an idea.
- New components: Two kicker striplines or magnets. Two amplifiers. Waveform generators.

Waveform-Programmable Kicker (cont'd)

- Specifications: Bandwidth of about 10 MHz, strength about 5% that of injection kicker.
- R&D required: Kicker magnet.
- Unknown aspects: Could a transverse feedback system accomplish the same thing? Note that a feedback system corrects over many turns while we want the (large) correction to occur in one turn.

Vertical Wiggler

- Purpose: Adjusts vertical emittance for lifetime.
 - Present method of adjusting vertical emittance compromizes injection efficiency.
- Status: Just an idea.
- New components: Electromagnetic wiggler magnet, special absorber for strong radiation.


Vertical Wiggler (cont'd)

- Specifications: Horizontal aperture of ±20 mm. Zero horizontal dispersion. Long period to generate vertical dispersion. Required strength unknown.
- R&D required: Wiggler and radiation absorber.
- Unknown aspects: Need a straight section from some sector. Future requirements for vertical emittance.

Horizontal Wiggler

- Purpose: Compensate the variation of emittance due to ID gap ramps through damping adjustment.
- Status: Just an idea.
- New components: Electromagnetic wiggler, absorber for strong radiation.

Horizontal Wiggler (cont'd)

Horizontal Wiggler (cont'd)

- Specifications: Need zero dispersion straight section. Strength unknown but can be derived from User run history.
- R&D required: Radiation absorber.
- Unknown aspects: Need a straight section.

BPM Memory/Scanner Upgrade

- Purpose: Produce simultaneous averages from various digital filters for turn-by-turn history, orbit correction, glitch logging, long-term data logging.
- Status: Ideas developed by DIA group and Lenkszus. Low priority. Project stalled?
- New components: Electronics.

BPM Memory/Scanner Upgrade (cont'd)

- Specifications: Simultaneous filters.
- R&D required: Unknown
- Unknown aspects: None.

HOM dampers for SR Extrusions

- Purpose: To remove random error in vertical bpm readbacks.
- Status: Ideas developed by DIA group. Dampers were inserted in one VC, but has not reduced the effect of the HOM by the expected factor. Project stalled.
- New components: HOM dampers.

HOM dampers for SR Extrusions (cont'd)

- Specifications: Reduce HOM by orders of magnitude to reduce random error to $< 1 \ \mu m$.
- R&D required: Need more ideas.
- Unknown aspects: Many

SR Dipole PS Stability

- Purpose: Improve by large factor to improve bunch cleaning effectiveness, i.e. keep tunes constant. Also studies dependent on tune measurements would benefit.
- Status: ES group waiting for specifications. Present stability is 1 part in 20,000 in the spectrum range DC to 1 Hz.
- New components: Regulator.

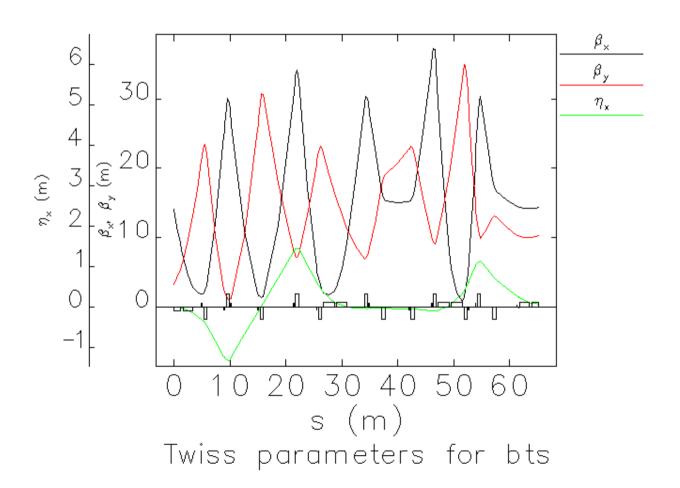
SR Dipole PS Stability (cont'd)

- Specifications: To be determined, but probably 1 part in 65,000 is sufficient.
- R&D required: Regulator, could be assisted by NMR probe output.
- Unknown aspects: None

Transverse Feedback System

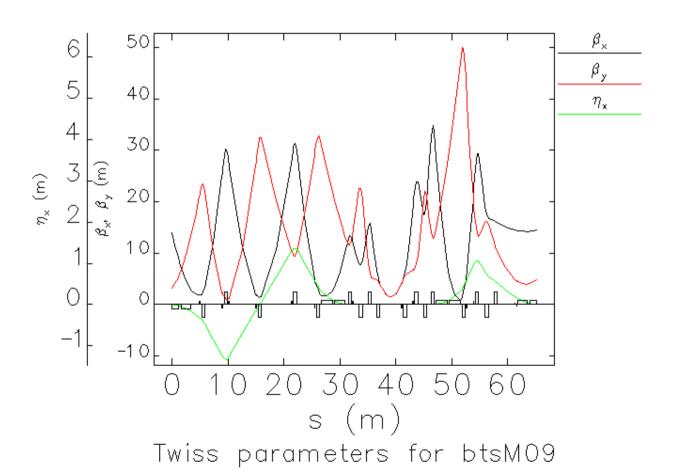
- Purpose: Stabilize single bunch motion with lower chromaticity setting. This would increase lifetime.
- Status: Just an idea. We already have striplines available for that purpose.
- New components: Electronics to process beam signal into correction signal. Amplifiers.

Transverse Feedback System (cont'd)


- Specifications: Bandwidth and power not known yet.
- R&D required: Many such system exists in other storage rings, so R&D may be minimal.
- Unknown aspects: Whether feeding back on centroid motion alone is sufficient in reducing the instabilities at operating bunch current.

Three-Screen Diagnostics System in BTS

- Purpose: Modify BTS line, and add three screens in order to make a emittance and beta function measurement.
- Status: Just an idea, but has been implemented in the linac after the bunch compressor.
- New components: 4-5 quadrupoles, high-resolution screens, perhaps CTR screens, more steering magnets.

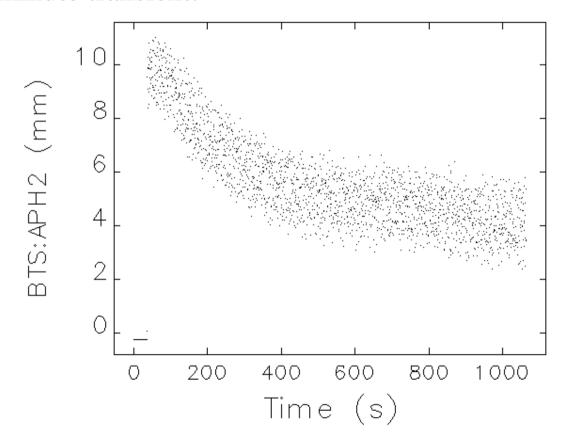

Three-Screen Diagnostics System in BTS (cont'd)

Original

Three-Screen Diagnostics System in BTS (cont'd)

Three screens

Three-Screen Diagnostics System in BTS (cont'd)


- Specifications: Resolution around 10 μm.
- R&D required: Optics matching.
- Unknown aspects: None.

Septum Regulation

- Purpose: Replace voltage regulation with current regulation to avoid doing feedforward on temperature or previous history of pulsing.
- Status: Voltage regulation causes a 10-minute transient on current output because of heating of coils.
- New components: More sophisticated regulator.

Septum Regulation (cont'd)

5-minute transient:

Septum Regulation (cont'd)

- Specifications: About 1 part in 1500.
- R&D required: Unknown
- Unknown aspects: How to coordinate this change with the improved HV stability mentioned earlier.

Longer-term Improvements

Longer Straight Section. Phase 2.

- Purpose: Increase usable length of straight section from 7.6 m to 10.6 m to add a fourth undulator.
 - Replace dipole with shorter magnet of increased strength. Move other magnets 1.5 m to make room.
- Status: Just an idea.
- New components: Dipole, ID VC extrusion, SR VC extrusion, transition box, new girders #1, #2, #4 and #5.

Longer Straight Section. Phase 2. (cont'd)

- Specifications: Fits four undulators. No strong reduction of lifetime. Minimum vertical aperture is not known, probably not 5 mm.
- R&D required: Same as phase 1 plus new dipole magnet.
- Unknown aspects: Can this be combined with dipole with gradient?

Higher-Conductivity ID VC

- Purpose: Reduce impedance of chambers. Coating Al VC with Cu will reduce resistance and impedance by factor 1.6, which is significant. Possible outcome is a reduction of chromaticity and increase lifetime.
- Status: Just an idea.
- New components: None. Reuse ID VCs.

Higher-Conductivity ID VC (cont'd)

- Specifications: Cu material. Thickness not determined yet. Sides not important.
- R&D required: Cu deposition.
- Unknown aspects: Vacuum issues.